Three contrasts between two senses of coherence
Teddy Seidenfeld
joint work with M.J.Schervish and J.B.Kadane - Statistics, CMU
Call an agent's choices coherent when they respect simple dominance relative to a (finite) partition.
$\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a finite partition of the sure event: a set of states. Consider two acts A_{1}, A_{2} defined by the their outcomes relative to Ω.

	ω_{1}	ω_{2}	ω_{3}	\cdots	ω_{n}
A_{1}	o_{11}	o_{12}	o_{13}	\ldots	$o_{1 n}$
A_{2}	o_{21}	o_{22}	o_{23}	\ldots	$o_{2 n}$

Suppose the agent can compare the desirability of different outcomes at least within each state, and, for each state ω_{j}, outcome $o_{2 j}$ is (strictly) preferred to outcome $o_{1 j}, j=1, \ldots, n$. Then A_{2} simply dominates A_{1} with respect to Ω.

- Coherence: When A_{2} simply dominates A_{1} in some finite partition, then A_{1} is inadmissible in any choice problem where \boldsymbol{A}_{2} is feasible.

Background on de Finetti's two senses of coherence

De Finetti $(1937,1974)$ developed two senses of coherence (coherence ${ }_{1}$ and coherence $_{2}$), which he extended also to infinite partitions.
Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}, \ldots\right\}$ be a countable partition of the sure event:
a finite or denumerably infinite set of states.
Let $\chi=\left\{X_{i}: \Omega \rightarrow \Re ; i=1, \ldots\right\}$ be a countable class of (bounded) realvalued random variables defined on Ω.

That is, $X_{i}\left(\omega_{j}\right)=r_{i j}$ and for each $X \in \chi,-\infty<\inf _{\Omega_{\Omega}} X(\omega) \leq \sup _{\Omega} X(\omega)<\infty$.
Consider random variables as acts, with their associated outcomes.

	ω_{1}	ω_{2}	ω_{3}	\ldots	ω_{n}	\ldots
X_{1}	r_{11}	r_{12}	r_{13}	\ldots	$r_{1 n}$	\ldots
X_{2}	r_{21}	r_{22}	r_{23}	\ldots	$r_{2 n}$	\ldots
\vdots						
X_{i}	$r_{i 1}$	$r_{i 2}$	$r_{i 3}$	\ldots	$r_{i n}$	\ldots
\vdots						

Coherence $_{1}$: de Finetti's (1937) the 0 -sum Prevision Game - wagering.
The players in the Prevision Game:

- The Bookie - who, for each random variable X in χ announces a prevision (a fair price), $P(X)$, for buying/selling units of X.
- The Gambler - who may make finitely many (non-trivial) contracts with the Bookie at the Bookie's announced prices.

For an individual contract, the Gambler fixes a real number α_{X}, which determines the contract on X, as follows.

In state ω, the contract has an outcome to the Bookie (and opposite outcome to the Gambler) of $\alpha_{X}[X(\omega)-P(X)]=O_{\omega}\left(X, P(X), \alpha_{X}\right)$.

When $\alpha_{X}>0$, the Bookie buys α_{X}-many units of X from the Gambler. When $\alpha_{X}<0$, the Bookie sells α_{X}-many units of X to the Gambler.

The Gambler may choose finitely many non-zero $\left(\alpha_{X} \neq 0\right)$ contracts.

The Bookie's net outcome in state ω is the sum of the payoffs from the finitely many non-zero contracts: $\sum_{X \in X} O_{\omega}\left(X, P(X), \alpha_{X}\right)=O(\omega)$.

Coherence $_{1}$: The Bookie's previsions $\{P(X): X \in \chi\}$ are coherent ${ }_{1}$ provided that there is no strategy for the Gambler that results in a sure (uniform) net loss for the Bookie.

$$
\neg \exists\left(\left\{\alpha_{\mathrm{X} 1}, \ldots, \alpha_{\mathrm{X} k}\right\}, \varepsilon>0\right), \forall \omega \in \Omega \sum_{X \in X} O_{\omega}\left(X, P(X), \alpha_{X}\right) \leq-\varepsilon .
$$

Otherwise, the Bookie's previsions are incoherent $_{1}$.
The net outcome O is just another random variable.
The Bookie's coherent t_{1} previsions do not allow the Gambler contracts where the Bookie's net-payoff is uniformly dominated by Abstaining.

	ω_{1}	ω_{2}	ω_{3}	\ldots	ω_{n}	\ldots
0	$O\left(\omega_{1}\right)$	$O\left(\omega_{2}\right)$	$O\left(\omega_{3}\right)$	\ldots	$O\left(\omega_{n}\right)$	\ldots
Abstain	0	0	0	\ldots	0	\ldots

Coherence $_{2}$: de Finetti’s (1974) Forecasting Game (with Brier Score)
There is only the one player in the Forecasting Game, the Forecaster.

- The Forecaster - who, for random variable X in χ announces a real-valued forecast $F(X)$, subject to a squared-error loss outcome.

In state ω, the Forecaster is penalized $-[X(\omega)-F(X)]^{2}=O_{\omega}(X, F(X))$.

The Forecaster's net score in state ω from forecasting finitely variables
$\left\{F\left(X_{i}\right): i=1, \ldots, k\right\}$ is the sum of the \boldsymbol{k}-many individual losses

$$
\sum_{i=1}^{k} O_{\omega}\left(X, F\left(X_{i}\right)\right)=\sum_{i=1}^{k}-\left[X_{i}(\omega)-F\left(X_{i}\right)\right]^{2}=O(\omega) .
$$

Coherence $_{2}$: The Forecaster's forecasts $\{F(X): X \in \chi\}$ are coherent $_{2}$ provided that there is no finite set of variables, $\left\{X_{1}, \ldots, X_{k}\right\}$ and set of rival forecasts $\left\{F^{\prime}\left(X_{1}\right), \ldots, F^{\prime}\left(X_{k}\right)\right\}$ that yields a uniform smaller net loss for the Forecaster in each state.

$$
\begin{gathered}
\neg \exists\left(\left\{F^{\prime}\left(X_{I}\right), \ldots, F^{\prime}\left(X_{k}\right)\right\}, \varepsilon>0\right), \forall \omega \in \Omega \\
\sum_{i=1}^{k}-\left[X_{i}(\omega)-F\left(X_{i}\right)\right]^{2} \leq \sum_{i=1}^{k}-\left[X_{i}(\omega)-F^{\prime}\left(X_{i}\right)\right]^{2}-\varepsilon .
\end{gathered}
$$

Otherwise, the Forecaster's forecasts are incoherent $_{1}$.
The Forecaster's coherent ${ }_{2}$ previsions do not allow rival forecasts that uniformly dominate in Brier Score (i.e., squared-error).

ω_{1}	ω_{2}	ω_{3}	\cdots	ω_{n}	\cdots
$O\left(\omega_{1}\right)$	$O\left(\omega_{2}\right)$	$O\left(\omega_{3}\right)$	\cdots	$O\left(\omega_{n}\right)$	\cdots
$O^{\prime}\left(\omega_{1}\right)$	$O^{\prime}\left(\omega_{1}\right)$	$O^{\prime}\left(\omega_{1}\right)$	\cdots	$O^{\prime}\left(\omega_{1}\right)$	\cdots

Theorem (de Finetti, 1974):
A set of previsions $\{P(X)\}$ are coherent ${ }_{1}$.
if and only if
The same forecasts $\{F(X): F(X)=P(X)\}$ are coherent ${ }_{2}$.
if and only if
There exists a (finitely additive) probability P such that these quantities are the \mathbf{P}-Expected values of the corresponding variables

$$
\mathbf{E}_{\mathbf{P}}[X]=F(X)=P(X)
$$

Corollary: When the variables are 0-1 indicator functions for events, A,

$$
I_{A}(\omega)=1 \text { if } \omega \in A \text { and } I_{A}(\omega)=0 \text { if } \omega \notin A
$$

then de Finetti's theorem asserts:
Coherent prices/forecasts must agree with the values of a (finitely
additive) probability distribution over these same events.
Otherwise, they are incoherent.

Example:

A Bookie's two previsions, $\left\{P(A)=.6 ; P\left(A^{c}\right)=.7\right\}$, are incoherent ${ }_{1}$ The Bookie has overpriced the two variables.

A Book is achieved against these previsions with the Gambler's strategy $\alpha_{A}=\alpha_{A}=1$, requiring the Bookie to buy each variable at the announced price.

The net payoff to the Bookie is $\mathbf{- 0 . 3}$ regardless which state ω obtains.

In order to see that these are also incoherent t_{2} forecasts, review the following diagram

If the forecast previsions are not coherent ${ }_{1}$, they lie outside the probability simplex. Project these incoherent ${ }_{1}$ forecasts into the simplex. As in the Example, (.60, .70) projects onto the coherent ${ }_{1}$ previsions depicted by the point (.45, .55). By elementary properties of Euclidean projection, the resulting coherent \mathbf{t}_{1} forecasts are closer to each endpoint of the simplex. Thus, the projected forecasts have a dominating Brier score regardless which state obtains. This establishes that the initial forecasts are incoherent ${ }_{2}$. Since no coherent ${ }_{1}$ forecast set can be so dominated, we have coherence ${ }_{1}$ of the previsions if and only coherence $_{2}$ of the corresponding forecasts.

Background on Coherence and Elicitation

De Finetti's interest in coherence $_{2}$, avoiding dominated forecasts under squared-error loss (Brier Score), was prompted by an observation due to Brier (1950).

Theorem (Brier, 1950) A SEU forecaster whose forecasts are scored by squared error loss in utility units, (uniquely) maximizes expected utility by announcing her/his expected value for each forecast variable.

- Brier Score is a (strictly) proper scoring rule .

That is, squared error loss provides the incentives for an SEU forecaster to be entirely straightforward with her/his forecasts.

A moment's reflection establishes that wagering, as in the Prevision Game, does not ensure the right incentives are present for the Bookie always to announce her/his expected $\mathrm{E}_{P}(X)$ value as the "fair price" $P(X)$ for variable X.

Suppose that the Bookie has an opinion about the Gambler's fair betting odds on an event, A.

Suppose the Bookie believes: $\quad E_{P}\left[I_{A}\right]<E_{P}\left[I_{A}\right]$.
Then it is strategic for the Bookie to announce a prevision:

$$
\mathbf{E}_{P}\left[I_{A}\right]<P(A)<\mathbb{E}_{P}\left[I_{A}\right] .
$$

The $1^{\text {st }}$ contrast between two senses of coherence: infinitely many previsions/forecasts at once.
(1) Recall that de Finetti's coherence criteria require that the Bookie/Forecaster respects dominance only with respect to random variables created by finite combinations of fair-gambles/forecasts.
(2) Also, for infinite Ω, de Finetti restricted the dominance principle to require that the dominating option has uniformly better outcomes: better in each state $\omega \in \Omega$ by at least some fixed amount, $\varepsilon>0$.

Why these twin restrictions on the simple dominance principle?
The answer is because de Finetti (like, e.g., Savage) made room under the a Big Tent of coherent preferences for finitely (but not necessarily countably) additive probabilities.

Example 1 (de Finetti, 1949).
Let Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}, \ldots\right\}$ be a denumerably infinite partition of "equally probable" states. Bookie's previsions are $P\left(\left\{\omega_{i}\right\}\right)=0, i=1, \ldots$.
The Bookie judges fair each gamble of the form $\alpha_{i}\left(\mathbf{I} \omega_{i}-0\right)$.
Thus, Bookie's personal probability is strongly finitely additive, as

$$
\mathbf{0}=\sum_{i} \mathbf{P}\left(\left\{\omega_{i}\right\}\right)<\mathbf{P}\left(\cup_{i}\left\{\omega_{i}\right\}\right)=\mathbf{P}(\Omega)=\mathbf{1}
$$

These are coherent ${ }_{1}$ previsions, by de Finetti's Theorem.
However, if the Gambler is allowed to engage in more than finitely many contracts at a time, even assuring that the net-outcome is finite and bounded in every state, there is a simple strategy that causes the Bookie to suffer a uniform (sure) loss.

$$
\text { Set } \alpha_{i}=-1 . \text { Then, } \forall \omega \in \Omega, \Sigma_{i} \alpha_{i}\left(\mathbf{I} \omega_{\mathrm{i}}(\omega)-0\right)=-\Sigma_{i} \mathbf{I} \omega_{\mathrm{i}}(\omega)=-1
$$

De Finetti noted: a sure-loss obtains in this fashion if and only if the Bookie's previsions are not countably additive.

However, no such failure of dominance results by combining infinitely many forecasts, provided that the Forecaster's expected score is finite. Assume that expectations for sums of the random variables to be forecast, and also for their squares, are absolutely convergent:

$$
\begin{align*}
& \mathbf{E}_{P}\left[\sum_{i}\left|\mathbf{X}_{\mathrm{i}}\right|\right] \leq \mathbf{V}<\infty \tag{1}\\
& \mathbf{E}_{\mathrm{P}}\left[\sum_{\mathrm{i}} \mathbf{X}_{\mathrm{i}}^{2}\right] \leq \mathbf{W}<\infty . \tag{2}
\end{align*}
$$

Proposition 1: Let $\chi=\left\{X_{i}, i=1 \ldots\right\}$ be a class of variables and P a finitely additive probability satisfying conditions (1) and (2), with coherent ${ }_{2}$ forecasts $\mathbf{E}_{\mathrm{P}}\left[X_{\mathrm{i}}\right]=\boldsymbol{p}_{\mathrm{i}}$.

There does not exist a set of real numbers $\left\{q_{i}\right\}$ such that

$$
\forall \omega \in \Omega, \sum_{\mathrm{i}}\left(p_{i}-\boldsymbol{X}_{\mathbf{i}}(\omega)\right)^{2}-\sum_{\mathrm{i}}\left(q_{i}-\mathbf{X}_{\mathbf{i}}(\omega)\right)^{2}>\mathbf{0}
$$

Corollary: When conditions (1) and (2) obtain, the infinite sum of Brier scores applied to the infinite set of forecasts $\left\{p_{i}\right\}$ is a strictly proper scoring rule.

Proposition 1 and its Corollary establish that the two senses of coherence are not equivalent when considering finitely additive probabilities and infinite sets of previsions/forecasts.

Assume the finiteness conditions (1) and (2).
Coherence $_{1}$, associated with the Prevision Game, depends upon the requirement that only finitely many fair contracts may be combined at once while permitting finitely (but not countably) additive probabilities to be coherent.

Coherence ${ }_{2}$, associated with the Forecasting Game, has no such restrictions for combining infinitely many forecasts. Moreover, Brier score retains its status as a strictly proper scoring rule even when infinitely many variables are forecast simultaneously.

- Contrast \#1 favors Coherence ${ }_{2}$ over Coherence ${ }_{1}$!

The $2^{\text {nd }}$ contrast between two senses of coherence: moral hazard.

Consider the following case of simple dominance between two acts.

	ω_{1}	ω_{2}
A_{1}	3	1
A_{2}	4	2

Act \boldsymbol{A}_{2} simply dominates act \boldsymbol{A}_{1}.
However, if there is moral hazard - act-state probabilistic dependence, then \boldsymbol{A}_{1} may maximize subjective (conditional) expected utility, not \boldsymbol{A}_{2}.

For example, consider circumstances where $P\left(\omega_{i} \mid A_{i}\right) \approx 1$, for $i=1,2$.
Then,

$$
\mathrm{SE}_{A_{1}} \mathrm{U}\left(A_{1}\right) \approx 3>2 \approx \mathrm{SE}_{A_{2}} \mathrm{U}\left(A_{2}\right) .
$$

The agent strictly prefers \boldsymbol{A}_{1} over $\boldsymbol{A}_{\mathbf{2}}$.

- With moral hazard, simple dominance is not compelling.

However, there is a more restrictive version of dominance that is robust against the challenge of moral hazard.

Consider two acts A_{1}, A_{2} defined by the their outcomes relative to Ω.

	ω_{1}	ω_{2}	ω_{3}	\cdots	ω_{n}
\boldsymbol{A}_{1}	\boldsymbol{o}_{11}	\boldsymbol{o}_{12}	o_{13}	\cdots	$\boldsymbol{o}_{1 n}$
\boldsymbol{A}_{2}	\boldsymbol{o}_{21}	\boldsymbol{o}_{22}	\boldsymbol{o}_{23}	\cdots	$\boldsymbol{o}_{2 n}$

Suppose the agent can compare the desirability of all pairs of different outcomes. The agent can compare outcome $o_{i j}$ and $o_{k l}$ for all pairs, and ranks them in some (strict) weak order $<$.

Say that A_{2} robustly dominates A_{1} with respect to Ω when,

$$
<-\max _{\Omega}\left\{o_{1 j}\right\} \ll-\min _{\Omega}\left\{o_{1 j}\right\} .
$$

The $<$-best of all possible outcomes under A_{1} is strictly \ll-dispreferred to the $<$-worst of all possible outcomes under \boldsymbol{A}_{2}

- It is immediate that Robust Dominance accords with SEU even in the presence of (arbitrary) moral hazards.

Proposition 2: Each instance of incoherence ${ }_{1}$, but not of incoherence ${ }_{2}$, is a case of Robust Dominance.

Abstaining is strictly preferred to Book regardless of moral hazard.

But the same incoherent $\mathbf{2}_{2}$ forecast, though dominated in Brier score by a rival forecast, may have greater expected utility than that dominating rival forecast when there is moral hazard connecting forecasting and the states forecast.

Example 2: The bookie is asked for a pair of fair betting odds, one for an event R and one for its complement $\boldsymbol{R}^{\mathrm{c}}$.

The same agent forecasts the same pair of events subject to Brier score. The pair $P(R)=.6$ and $P\left(R^{c}\right)=.9$ are incoherent in both of de Finetti's senses, since $P(R)+P\left(R^{c}\right)=1.5>1.0$.

For demonstrating incoherence ${ }_{1}$, the gambler chooses $\alpha_{R}=\alpha_{R^{\mathrm{c}}}=1$, which produces a sure-loss of $\mathbf{- 0 . 5}$ for the bookie.

That is, $1\left(I_{R}(\omega)-.6\right)+1\left(I_{R}(\omega)-.9\right)=-0.5<0$ in each state, $\omega \in \Omega$.
Hence, Abstaining from betting, with a constant payoff 0, robustly dominates the sum of these two fair bets in the partition by states Ω.

The Forecaster announces $\quad F(R)=.60$ and $F\left(R^{c}\right)=.90$.
For demonstrating incoherence ${ }_{2}$, consider the rival coherent forecasts

$$
Q(R)=.35 \text { and } Q\left(R^{\mathrm{c}}\right)=.65
$$

the de Finetti projection of the point $(.6, .9)$ into the coherent simplex.

For states $\omega \in \boldsymbol{R}$,
the Brier score for the two F-forecasts is $(1-.6)^{2}+(0-.9)^{2}=.970$
the Brier score for the rival Q-forecasts is $(1-.35)^{2}+(0-.65)^{2}=.845$.
For states $\omega \notin \boldsymbol{R}$,
the Brier score for the two F-forecasts is $(0-.6)^{2}+(1-.9)^{2}=.370$
the Brier score for the rival Q-forecasts is $(0-.35)^{2}+(1-.65)^{2}=.245$.

- The Brier score for the rival Q-forecasts ($.35, .65$) simply dominates, but does not robustly dominate the Brier score for the \boldsymbol{F}-forecasts $(.6, .9)$ in the partition by states $\boldsymbol{\Omega}$.

Consider a case of moral hazard in betting, or in forecasting, as before:
Let the moral hazards associated with betting be any which way at all!
Conditional on making the incoherent ${ }_{2} \mathrm{~F}$-forecasts (.6, .9),
the agent's conditional probability for event R^{c} is nearly 1.
But conditional on making the rival (coherent) Q-forecasts (.35, .65) the agent's conditional probability for R is nearly 1.

Then it remains the case that given the incoherent ${ }_{1}$ pair of betting odds (.6, .9), the bookie has a negative conditional expected utility of $\mathbf{- 0 . 5}$ when the gambler chooses $\alpha_{R}=\alpha_{R^{c}}=1$, regardless the moral hazards relating betting with the events wagered.

Offering those incoherent ${ }_{1}$ betting odds remains strictly dispreferred to Abstaining, which has conditional expected utility 0 even in this case of extreme moral hazard. Abstaining robustly dominates a Book.

However, with the assumed moral hazards for forecasting:
The conditional expected loss under Brier score given the incoherent ${ }_{2}$ F-forecast pair (.6, .9) is nearly $\mathbf{. 3 7 0}$.

The conditional expected loss under Brier score given the rival coherent and dominating Q-forecast pair ($.35, .65$) is nearly $\mathbf{8 4 5}$.

That is, though the rival coherent $2_{2} Q$-forecast pair (.35, .65) simply dominates the incoherent ${ }_{2} \boldsymbol{F}$-forecast pair $(.6, .9)$ in combined Brier score, as this is not a case of robust dominance, with moral hazard it may be the that incoherent forecast is strictly preferred. $_{\text {fod }}$
With these moral hazards, each rival Q^{\prime}-forecast that simply dominates the incoherent ${ }_{2} F$-forecast pair $(.6, .9)$ has lower conditional expected utility and is dispreferred to the incoherent $\mathbf{F} \boldsymbol{F}$-forecasts.

- Contrast \#2 favors Coherence ${ }_{1}$ over Coherence ${ }_{2}$!

A $3^{\text {rd }}$ contrast between two senses of coherence: state-dependent utility.
Assume that there are no moral hazards: states are probabilistically independent of acts.

Begin with a trivial result about equivalent SEU representations.
Suppose an SEU agent's $>$ preferences over acts on $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is represented by prob/state-dependent utility pair ($P ; U_{j}: j=1, \ldots, n$).

\[

\]

Let Q be a probability on Ω that agrees with P on null events:

$$
P(\omega)=0 \text { if and only if } Q(\omega)=0 .
$$

Let $U^{\prime}{ }_{j}$ be defined as $c_{j} U_{j}$, where $c_{j}=P\left(\omega_{j}\right) / Q\left(\omega_{j}\right)$.
(Trivial Result) Proposition 3:
$\left(P ; U_{j}\right)$ represents $>$ if and only if $\left(Q ; U_{j}^{\prime}\right)$ represents $>$.

Example 3: The de Finetti Prevision Game for a single event G.
For simplicity, let $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$ with $G=\left\{\omega_{1}\right\}$.
Suppose that, when betting in US dollars, \$, the Bookie posts fair odds $P^{\$}(G)=0.5$, so that she/he judges as fair contracts of the form

$$
\$ \alpha\left(I_{G}-.5\right)
$$

Suppose that, when betting in Euros, $€$, the same Bookie posts fair odds $P^{€}(G)=5 / 11=0 . \overline{45}$, so that she/he judges as fair contracts of the form

$$
€ \alpha\left(I_{G}-5 / 11\right)
$$

- Is the Bookie coherent ${ }_{1}$? Answer: YES!
- Why do the Bookie's previsions depend upon the currency?

Answer: Because the Bookie's currency valuations are state-dependent!

In state ω_{1}			In state ω_{2}
$€ 1 \equiv \$ 1.25$			$€ 1 \equiv \$ 1.50$
	ω_{1}	ω_{2}	
D_{1}	$\$ 1$	$\$ 0$	
D_{2}	$\$ 0$	$\$ 1$	

The Bookie is indifferent between acts D_{1} and D_{2} since she/he has \$-fairbetting rates of $1 / 2$ on each state.

So, then the Bookie is indifferent between acts E_{1} and \boldsymbol{E}_{2}

	ω_{1}	ω_{2}
\boldsymbol{E}_{1}	$€ \mathbf{€ 0 . 8 0}$	$€ 0$
\boldsymbol{E}_{2}	$€ 0$	$€ 0.67$

which mandates $€$-fair betting rates of $5 / 11: 6 / 11$ on $\omega_{1}: \omega_{2}$.

Aside: The Bookie has a fair currency exchange rate of $€ 1 \equiv \$ 1.375$.

But by the Trivial Result - there is no way to separate fair-odds (degrees of belief) from currency (utility values) based on coherent betting odds!

One $\left(\$ P, U_{j}\right)$ pair uses a state-independent utility for Dollars and a state dependent utility for Euros.

One ($€ Q ; U_{j}^{\prime}$) pair uses a state-independent utility for Euros and a state dependent utility for Dollars.

- Fixing coherent personal probabilities in the Prevision Game does not allow a separation of beliefs from values.

What is the situation in the Forecasting Game?
What happens to the agent's coherent ${ }_{2}$ forecasts when Brier score is made operational in Dollar units, rather than in Euro units?
Does propriety of squared-error loss resolve which is the Forecaster's real degrees of belief

The answer is that the Trivial Result applies to all decisions over a set of acts, including those in the Forecasting Game.

When scored in Dollars, the coherent ${ }_{2}$ Forecaster will maximize expected utility by offering forecasts corresponding to the ($\$ P, U_{j}$) pair, which uses a state-independent utility for Dollars and a state dependent utility for Euros.

When scored in Euros, the coherent ${ }_{2}$ Forecaster will maximize expected utility by offering forecasts corresponding to the ($€ Q ; \boldsymbol{U}^{\prime}{ }_{j}$) pair, which uses a state-independent utility for Euros and a state dependent utility for Dollars.

Neither the Prevision Game nor the Forecasting Game solves the problem posed by the Trivial Result, the problem of separating beliefs from values based on preferences over acts.

- Contrast \#3 favors neither Coherence ${ }_{1}$ nor Coherence 2_{2}. Both fail !!

Summary

In three different contrasts between de Finetti's two senses of coherence, we have these varying results:
\#1: Coherence $_{1}$ - Previsions immune to Book - does not, but Coherence $_{2}$ - Forecasting subject to Brier score - does permit the infinite combinations of previsions/forecasts that are separately coherent when these arise from a (merely) f.a. probability.
\#2: Coherence $_{2}$ - Forecasting subject to Brier score - does not, but Coherence ${ }_{1}$ - Previsions immune to Book - does permit arbitrary cases of moral hazard.
\#3: Neither Coherence ${ }_{1}$ - Previsions immune to Book, Nor Coherence $\mathbf{2}_{2}$ - undominated Forecasts according to Brier score, solves the challenge posed by the Trivial Result for separating beliefs from values based on preferences over acts.

Afew references

Brier, G.W. (1950) Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review 78: 1-3.
de Finetti, B. (1937) Foresight: Its Logical Laws, Its Subjective Sources. (translated by H.E.Kyburg Jr.) in Kyburg and Smokler (eds.) Studies in Subjective Probability. 1964 New York: John Wiley, pp. 93-158.
de Finetti, B (1949) On the Axiomatization of Probability, reprinted as Chapter 5 in
Probability, Induction, and Statistics (1972) New York: John Wiley.
de Finetti, B (1974) Theory of Probability, vol. 1 New York: John Wiley.
Schervish, M.J., Seidenfeld, T., and Kadane, J.B. (2011) The Effect of Exchange Rates on Statistical Decisions. Dept. of Statistics, CMU.

Seidenfeld, T., Schervish, M.J., and Kadane, J.B. (2011) Dominating Countably Many Forecasts. Dept. of Statistics, CMU.

